Температурный коэффициент сопротивления
Как вы могли заметить, значения удельных электрических сопротивлений в таблице из предыдущей статьи даны при температуре 20 ° Цельсия. Если вы предположили, что они могут измениться при изменении температуры, то оказались правы.
Зависимость сопротивления проводов от температуры, отличной от стандартной (составляющей обычно 20 градусов Цельсия), можно выразить через следующую формулу:
Константа "альфа" (α) известна как температурный коэффициент сопротивления, который равен относительному изменению электрического сопротивления участка электрической цепи или удельного сопротивления вещества при изменении температуры на единицу. Так как все материалы обладают определенным удельным сопротивлением (при температуре 20 ° С), их сопротивление будет изменяться на определенную величину в зависимости от изменения температуры. Для чистых металлов температурный коэффициент сопротивления является положительным числом, что означает увеличение их сопротивления с ростом температуры. Для таких элементов, как углерод, кремний и германий, этот коэффициент является отрицательным числом, что означает уменьшение их сопротивления с ростом температуры. У некоторых металлических сплавов температурный коэффициент сопротивления очень близок к нулю, что означает крайне малое изменение их сопротивления при изменении температуры. В следующей таблице приведены значения температурных коэффициентов сопротивления нескольких распространенных типов металлов:
Проводник | α, на градус Цельсия |
Никель | 0,005866 |
Железо | 0,005671 |
Молибден | 0,004579 |
Вольфрам | 0,004403 |
Алюминий | 0,004308 |
Медь | 0,004041 |
Серебро | 0,003819 |
Платина | 0,003729 |
Золото | 0,003715 |
Цинк | 0,003847 |
Сталь (сплав) | 0,003 |
Нихром (сплав) | 0,00017 |
Нихром V (сплав) | 0,00013 |
Манганин (сплав) | 0,000015 |
Константан (сплав) | 0,000074 |
Давайте на примере нижеприведенной схемы посмотрим, как температура может повлиять на сопротивление проводов и ее функционирование в целом:
Общее сопротивление проводов этой схемы (провод 1 + провод 2) при стандартной температуре 20 ° С составляет 30 Ом. Проанализируем схему с помощью таблицы напряжений токов и сопротивлений:
При 20 ° С мы получаем 12,5 В на нагрузке, и в общей сложности 1,5 В (0,75 + 0,75) падения напряжения на сопротивлении проводов. Если температуру поднять до 35 ° С, то при помощи вышеприведенной формулы мы легко сможем рассчитать изменение сопротивления на каждом из проводов. Для медных проводов (α = 0,004041) это изменение составит:
Пересчитав значения таблицы, мы можем увидеть к каким последствиям привело изменение температуры:
Сравнив эти таблицы можно прийти к выводу, что напряжение на нагрузке при увеличении температуры снизилось (с 12,5 до 12,42 вольт), а падение напряжения на проводах увеличилось (с 0,75 до 0,79 вольт). Изменения на первый взгляд незначительны, но они могут быть существенны для протяженных линий электропередач, связывающих электростанции и подстанции, подстанции и потребителей.